【GS专栏】3-全基因组选择模型之Bayes

知识/政策规划

2021-01-18


  上一篇:【GS专栏】2—全基因组选择模型之BLUP,我们介绍了全基因组选择模型的BLUP方法,这一次我们继续来分享GS的Bayes方法。

  基于BLUP理论的基因组选择方法假定所有标记都具有相同的遗传方差,而实际上在全基因组范围内只有少数SNP有效应,且与影响性状的QTL连锁,大多数SNP是无效应的。当我们将标记效应的方差假定为某种先验分布时,模型变成了贝叶斯方法。常见的贝叶斯方法也是Meuwissen提出来的(就是提出GS的那个人),主要有BayesA、BayesB、BayesC、Bayesian Lasso等。

  BayesA

  BayesA假设每个SNP都有效应且服从正态分布,效应方差服从尺度逆卡方分布。BayesA方法事先假定了两个与遗传相关的参数,自由度v和尺度参数S。它将Gibbs抽样引入到马尔科夫链蒙特卡洛理论(MCMC)中来计算标记效应。

  BayesB

  BayesB假设少数SNP有效应,且效应方差服从服从逆卡方分布,大多数SNP无效应(符合全基因组实际情况)。BayesB方法的标记效应方差的先验分布使用混合分布,难以构建标记效应和方差各自的完全条件后验分布,因此BayesB使用Gibbs和MH(Metropolis-Hastings)抽样对标记效应和方差进行联合抽样。

  BayesB方法在运算过程中引入一个参数π。假定标记效应方差为0的概率为π,服从逆卡方分布的概率为1-π,当π为1时,所有SNP都有效应,即和BayesA等价。当遗传变异受少数具有较大影响的QTL控制时,BayesB方法准确性较高。

  BayesC/Cπ/Dπ

  BayesB中的参数π是人为设定的,会对结果带来主观影响。BayesC、BayesCπ、BayesDπ等方法对BayesB进行了优化。BayesC方法将π作为未知参数,假定其服从U(0,1)的均匀分布,并假设有效应的SNP的效应方差不同。BayesCπ方法在BayesC的基础上假设SNP效应方差相同,并用Gibbs抽样进行求解。BayesDπ方法对未知参数π和尺度参数S进行计算,假设S的先验分布和后验分布均服从(1,1)分布,可直接从后验分布中进行抽样。下图较为形象地说明了不同方法的标记效应方差分布:

 

 

  Bayesian Lasso

  Bayesian Lasso(Least absolute shrinkage and selection operator)假设标记效应方差服从指数分布的正态分布,即拉普拉斯(Laplace)分布。其与BayesA的区别在于标记效应服从的分布不同,BayesA假设标记效应服从正态分布。Laplace分布可允许极大值或极小值以更大概率出现。

  从以上各类贝叶斯方法可看出,贝叶斯方法的重点和难点在于如何对超参的先验分布进行合理的假设。

  Bayes模型相比于BLUP方法往往具有更多的待估参数,在提高预测准确度的同时带来了更大的计算量。MCMC需要数万次的迭代,每一次迭代需要重估所有标记效应值,该过程连续且不可并行,需消耗大量的计算时间,限制了其在时效性需求较强的动植物育种实践中的应用。

  为提高运算速度和准确度,很多学者对Bayes方法中的先验假设和参数进行优化,提出了fastBayesA、BayesSSVS、fBayesB、emBayesR、EBL、BayesRS、BayesTA等。但目前最常用的Bayes类方法还是上述的几种。

  各种模型的预测准确度较大程度的取决于其模型假设是否适合所预测表型的遗传构建。一般而言,调参后贝叶斯方法的准确性比BLUP类方法要略高,但运算速度和鲁棒性不如BLUP。因此,我们应根据自身需求权衡利弊进行合理选择。

  本期基因组选择的Bayes模型分享就到这里啦,下期由小百老师继续介绍机器学习方法及其他GS模型研究热点,敬请期待!

 

  参考资料

  • T. H. E. Meuwissen et al. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. GENETICS April 1, 2001 vol. 157 no. 4 1819-1829.
  • McGowan M et al. Ideas in Genomic Selection with the Potential to Transform Plant Molecular Breeding: A Review. Preprints 2020, 2020100460.
  • Xin Wang et al. Genomic selection methods for crop improvement: Current status and prospects. The Crop Journal, Volume 6, Issue 4, August 2018, Pages 330-340.
  • Jingjing Bao et al. Research progress on genomic selectino methods in livestock and poultry. China Animal Husbandry & Veterinary Medicine. 2020, 47(10): 3297-3304.
  • Lilin Yin et al. The Progress and Prospect of Genomic Selection Models. Acta Veterinaria et Zootechnica Sinica, 2019, 50(2): 233-242.

相关推荐

百奥繁育 | 良种选育的信息管理系统

百奥繁育 | 良种选育的信息管理系统

09-06

2023

江西种业也刮智能育种风

8月25日,江西省水稻种质资源创新交流及智能育种技术研讨会在江西省农科院顺利召开。江西农业大学、江西师范大学、广东省农科院、江西省农科院、中国水稻所江西早稻中心、南昌市农科院、赣州市农科所有关专家代表以及省内种企代表共约40人参与了本次交流会议。

08-28

2023

百奥繁育 | 育种田间的信息流水线

有人说,植物育种的过程就像工厂流水线。挑选的种质即原材料,根据市场需求进行设计与加工,送入田间生产线后,一代代优中选优,还得经过严格的产量、品质、抗性测试,过五关斩六将,最终拿到审定编号,成为可以推广的成熟产品。 虽然流程相似,但育种工作远不及工厂生产那样标准。田间环境气候复杂、真实性状判断困难、水肥条件难以统一……种种困难下,选育良种成了概率事件,育种家们都有种“尽人事听天命”的无奈感。

08-22

2023

百奥云 & 火山引擎 | 为现代农业的“芯片”增添新科技

育种4.0时代,比拼的是科技创新,关键是通过数字化、信息化、智能化让育种过程缩短周期、提升效率、降低风险,而这也是长沙百奥云数据科技有限公司(百奥云)的创业初衷。

08-22

2023

百奥云新品发布 | 高质量基因组极速拼接服务

1. 利用PopGenomics快速对基因组实现高质量组装 基因组组装是将全基因组测序的小片段(reads长度100 bp-100 kb)通过算法拼接成尽量长的片段(contig 和scaffold,长度几十kb 到Mb 不等)或者整条染色体的过程。获得包含基因组全序列的参考基因组是对动植物进行基因组学研究和育种利用的前提[1]。 由于植物基因组具有非常丰富的多样性,参考已发表的少数物种组装新的物种,有时却无法达到理想的组装效果。测序技术发展提供了短序列测序、单分子测序、光学图谱、Hi-C 图谱等多种测序技术及其组合的组装方案,到目前为止,已经有上千个植物基因组被组装(图1)。然而,如何以最低成本快速获得满足需求的高质量基因组,仍然是科研人员和育种数据分析人员普遍面临的一个问题。

08-22

2023

夏风又绿田间草,除草劳动正当时

7月26日,顶着炎炎夏日 在公司CSO桂進老师的带领下 举行了一场别开生面的劳动体验。

08-04

2023